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Abstract
This paper presents the winning system for the zero-shot Spanish framing de-
tection task, which also achieves competitive places in eight additional lan-
guages. The challenge of the framing detection task lies in identifying a set of 14
frames when only a few or zero samples are available, i.e., a multilingual multi-
label few- or zero-shot setting. Our developed solution employs a pre-training
procedure based on multilingual Transformers using a label-aware contrastive
loss function. In addition to describing the system, we perform an embedding
space analysis and ablation study to demonstrate how our pre-training proce-
dure supports framing detection to advance computational framing analysis.

mCPT
Multilingual Transformer body with a neural network classifi-
cation head
Two-phase, multi-stage pipeline. The first phase learns a
multilingual model on all labeled data. Phase two is required
to precisely learn the target distribution.
The contrastive fine-tuning stage employs a contrastive
learning loss function adopted from Zheng et al.1 to improve
representations
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Our system performs label-aware contrastive fine-tuning (top) in a two-phase procedure (bot-
tom). Embeddings of samples with similar labels are attracted, while they are repelled for
dissimilar labels.

Results
The highlighted row shows the full model with contrast sam-
pling enabled. Contrast sampling ensures that we find at least
one negative pair per batch to improve the consistency of train-
ing. We then iteratively remove components of the model: (-
CS) contrast sampling, (-PT) multilingual pre-training, (-LCON)
the contrastive term of the loss function, and (-E2E) end-to-end
training.

Model en it ru fr ge po ∆

mCPT+CS .688 .590 .519 .575 .591 .638
- CS .682 .585 .520 .570 .561 .636 -.008
- PT .681 .545 .475 .563 .583 .616 -.015
- LCON .657 .521 .436 .524 .570 .645 -.018
- E2E .629 .519 .500 .535 .586 .633 .008

The generalization ability of our system is demonstrated by pro-
viding the winning contribution for the Spanish framing detection
subtask where no training samples were available.

Conclusion
Multilingual pre-training effectively increases the available
amount of training data but may require target-distribution
specific training
Contrastive learning acts as a regularizer optimizing for uni-
formity and alignment in multi-label settings

Training optimizes for uniformity2, as shown by the shift of aver-
age similarities to zero (first row). It also preserves alignment2

between samples with similar label vectors while pushing apart
samples with dissimilar label vectors (second row).
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= 0.006, R2 = 0.004

(a) Without any training, pairs
of embeddings are similar
regardless of their label

distance.
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(b) After pre-training, the
embedding cosine similarity

reflects the Hamming
distance of the labels.

0 1 2 3 4 5 6 7 8 91011121314
Label Distance

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Em
be

dd
in

g 
Si

m
ila

rit
y

= 0.159, R2 = 0.556

(c) Fine-tuning on the target
language further increases
uniformity and alignment.
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